1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
<?php /** * PHPExcel * * Copyright (c) 2006 - 2014 PHPExcel * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * @category PHPExcel * @package PHPExcel_Shared_Trend * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL * @version 1.8.0, 2014-03-02 */
require_once(PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php');
/** * PHPExcel_Linear_Best_Fit * * @category PHPExcel * @package PHPExcel_Shared_Trend * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) */ class PHPExcel_Linear_Best_Fit extends PHPExcel_Best_Fit { /** * Algorithm type to use for best-fit * (Name of this trend class) * * @var string **/ protected $_bestFitType = 'linear';
/** * Return the Y-Value for a specified value of X * * @param float $xValue X-Value * @return float Y-Value **/ public function getValueOfYForX($xValue) { return $this->getIntersect() + $this->getSlope() * $xValue; } // function getValueOfYForX()
/** * Return the X-Value for a specified value of Y * * @param float $yValue Y-Value * @return float X-Value **/ public function getValueOfXForY($yValue) { return ($yValue - $this->getIntersect()) / $this->getSlope(); } // function getValueOfXForY()
/** * Return the Equation of the best-fit line * * @param int $dp Number of places of decimal precision to display * @return string **/ public function getEquation($dp=0) { $slope = $this->getSlope($dp); $intersect = $this->getIntersect($dp);
return 'Y = '.$intersect.' + '.$slope.' * X'; } // function getEquation()
/** * Execute the regression and calculate the goodness of fit for a set of X and Y data values * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param boolean $const */ private function _linear_regression($yValues, $xValues, $const) { $this->_leastSquareFit($yValues, $xValues,$const); } // function _linear_regression()
/** * Define the regression and calculate the goodness of fit for a set of X and Y data values * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param boolean $const */ function __construct($yValues, $xValues=array(), $const=True) { if (parent::__construct($yValues, $xValues) !== False) { $this->_linear_regression($yValues, $xValues, $const); } } // function __construct()
} // class linearBestFit
|