export default /* glsl */` struct PhysicalMaterial { vec3 diffuseColor; float specularRoughness; vec3 specularColor; #ifdef CLEARCOAT float clearcoat; float clearcoatRoughness; #endif #ifdef USE_SHEEN vec3 sheenColor; #endif }; #define MAXIMUM_SPECULAR_COEFFICIENT 0.16 #define DEFAULT_SPECULAR_COEFFICIENT 0.04 // Clear coat directional hemishperical reflectance (this approximation should be improved) float clearcoatDHRApprox( const in float roughness, const in float dotNL ) { return DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) ); } #if NUM_RECT_AREA_LIGHTS > 0 void RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { vec3 normal = geometry.normal; vec3 viewDir = geometry.viewDir; vec3 position = geometry.position; vec3 lightPos = rectAreaLight.position; vec3 halfWidth = rectAreaLight.halfWidth; vec3 halfHeight = rectAreaLight.halfHeight; vec3 lightColor = rectAreaLight.color; float roughness = material.specularRoughness; vec3 rectCoords[ 4 ]; rectCoords[ 0 ] = lightPos + halfWidth - halfHeight; // counterclockwise; light shines in local neg z direction rectCoords[ 1 ] = lightPos - halfWidth - halfHeight; rectCoords[ 2 ] = lightPos - halfWidth + halfHeight; rectCoords[ 3 ] = lightPos + halfWidth + halfHeight; vec2 uv = LTC_Uv( normal, viewDir, roughness ); vec4 t1 = texture2D( ltc_1, uv ); vec4 t2 = texture2D( ltc_2, uv ); mat3 mInv = mat3( vec3( t1.x, 0, t1.y ), vec3( 0, 1, 0 ), vec3( t1.z, 0, t1.w ) ); // LTC Fresnel Approximation by Stephen Hill // http://blog.selfshadow.com/publications/s2016-advances/s2016_ltc_fresnel.pdf vec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y ); reflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords ); reflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords ); } #endif void RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { float dotNL = saturate( dot( geometry.normal, directLight.direction ) ); vec3 irradiance = dotNL * directLight.color; #ifndef PHYSICALLY_CORRECT_LIGHTS irradiance *= PI; // punctual light #endif #ifdef CLEARCOAT float ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) ); vec3 ccIrradiance = ccDotNL * directLight.color; #ifndef PHYSICALLY_CORRECT_LIGHTS ccIrradiance *= PI; // punctual light #endif float clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL ); reflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness ); #else float clearcoatDHR = 0.0; #endif #ifdef USE_SHEEN reflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen( material.specularRoughness, directLight.direction, geometry, material.sheenColor ); #else reflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness); #endif reflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor ); } void RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { reflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor ); } void RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) { #ifdef CLEARCOAT float ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) ); reflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness ); float ccDotNL = ccDotNV; float clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL ); #else float clearcoatDHR = 0.0; #endif float clearcoatInv = 1.0 - clearcoatDHR; // Both indirect specular and indirect diffuse light accumulate here vec3 singleScattering = vec3( 0.0 ); vec3 multiScattering = vec3( 0.0 ); vec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI; BRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering ); vec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) ); reflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering; reflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance; reflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance; } #define RE_Direct RE_Direct_Physical #define RE_Direct_RectArea RE_Direct_RectArea_Physical #define RE_IndirectDiffuse RE_IndirectDiffuse_Physical #define RE_IndirectSpecular RE_IndirectSpecular_Physical // ref: https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf float computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) { return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion ); } `;